摘 要: | 针对在柴油机故障诊断中径向基函数(Radial Basis Function,RBF)神经网络泛化能力不足的问题,提出一种基于AGA-RBF算法的柴油机故障诊断方法。在该方法中将自适应遗传算法(Adaptive Genetic Algorithm,AGA)和RBF神经网络有机地结合起来,利用自适应遗传算法对RBF神经网络的基函数宽度和中心进行优化,将优化后的RBF神经网络应用于柴油机故障诊断。通过实验仿真表明,该算法收敛速度快,改善了RBF神经网络的泛化能力,提高了故障诊断准确率,实用性强,易于工程实现。
|