The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation |
| |
Authors: | MR Player PF Torrence |
| |
Affiliation: | Section on Biomedical Chemistry, Laboratory of Medicinal Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0805, USA. |
| |
Abstract: | The 2-5A system is an RNA degradation pathway that can be induced by the interferons (IFNs). Treatment of cells with IFN activates genes encoding several double-stranded RNA (dsRNA)-dependent synthetases. These enzymes generate 5'-triphosphorylated, 2',5'-phosphodiester-linked oligoadenylates (2-5A) from ATP. The effects of 2-5A in cells are transient since 2-5A is unstable in cells due to the activities of phosphodiesterase and phosphatase. 2-5A activates the endoribonuclease 2-5A-dependent RNase L, causing degradation of single-stranded RNA with moderate specificity. The human 2-5A-dependent RNase is an 83.5 kDa polypeptide that has little, if any, RNase activity, unless 2-5A is present. 2-5A binding to RNase L switches the enzyme from its off-state to its on-state. At least three 2',5'-linked oligoadenylates and a single 5'-phosphoryl group are required for maximal activation of the RNase. Even though the constitutive presence of 2-5A-dependent RNase is observed in nearly all mammalian cell types, cellular amounts of 2-5A-dependent mRNA and activity can increase after IFN treatment. One well-established role of the 2-5A system is as a host defense against some types of viruses. Since virus infection of cells results in the production and secretion of IFNs, and since dsRNA is both a frequent product of virus infection and an activator of 2-5A synthesis, the replication of encephalomyocarditis virus, which produces dsRNA during its life cycle, is greatly suppressed in IFN-treated cells as a direct result of RNA decay by the activated 2-5A-dependent RNase. This review covers the organic chemistry, enzymology, and molecular biology of 2-5A and its associated enzymes. Additional possible biological roles of the 2-5A system, such as in cell growth and differentiation, human immunodeficiency virus replication, heat shock, atherosclerotic plaque, pathogenesis of Type I diabetes, and apoptosis, are presented. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|