首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小二乘支持向量机和机电综合特征的发电机故障诊断
引用本文:万书亭,管森森,刘洪亮,佟海侠. 基于最小二乘支持向量机和机电综合特征的发电机故障诊断[J]. 中国工程机械学报, 2009, 7(1): 80-85
作者姓名:万书亭  管森森  刘洪亮  佟海侠
作者单位:华北电力大学机械工程系,河北保定,071003
摘    要:提出了1种最小二乘支持向量机和机电综合特征相结合的发电机故障诊断模型.用二次损失函数代替传统支持向量机中的不敏感损失函数,将不等式约束条件变为等式约束,从而将二次规划问题转变为线性方程组求解,降低了计算的复杂性.提取发电机故障中的综合特征,即振动信号和电流信号,整理后作为诊断模型的特征值,从而得到了故障的典型特征,提高了诊断的准确率.最后从SDF 9型模拟发电机中实测数据进行分析,结果表明,与常规的方法相比,该模型具有较高的分类速度和较好的故障诊断准确率.

关 键 词:最小二乘支持向量机  机电综合特征  故障诊断  发电机  特征向量

Generator fault diagnosis using least-squares-based support vector machine and mechatronical features extraction
WAN Shu-ting,GUAN Sen-sen,LIU Hong-liang,TONG Hai-xia. Generator fault diagnosis using least-squares-based support vector machine and mechatronical features extraction[J]. Chinese Journal of Construction Machinery, 2009, 7(1): 80-85
Authors:WAN Shu-ting  GUAN Sen-sen  LIU Hong-liang  TONG Hai-xia
Affiliation:(Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China)
Abstract:In this study, a generator fault diagnosis model is first developed using least-squares-based support vector machine and mechatronical features. Then, the insensitive loss function regarding traditional support vector machine is replaced by the quadratic loss function. In this way, the inequality constraints are adapted to the equality constraints so as to simplify the quadratic programming problem as the linear equation groups, viz., reduce the computational complexity. Next, the mechatronical features are extracted from the vibration and current signals. Furthermore, these features are organized as eigenvectors, i.e. typical fault features of diagnosis model, so as to improve the diagnosis accuracy. Finally, the testing data, which are sampled from the SDF-9 Simulation Generator, are used for analysis. Therefore, it is found from the experimental results that, compared with traditional approaches, the proposed model possesses such strongholds as classification efficiency and diagnosis accuracy.
Keywords:least-squares-based support vector machine  mechatronical feature  fault diagnosis  generator  eigenvector
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号