首页 | 本学科首页   官方微博 | 高级检索  
     


Selective gas-phase cleavage at the peptide bond C-terminal to aspartic acid in fixed-charge derivatives of Asp-containing peptides
Authors:Gu C  Tsaprailis G  Breci L  Wysocki V H
Affiliation:Department of Chemistry, University of Arizona, Tucson 85721, USA.
Abstract:This study focuses on the molecular level interpretation of the selective gas-phase cleavage at aspartic acid residues (Asp) in protonated peptides. A phi3P+CH2C(=O)group (phi = 2,4,6-trimethoxyphenyl) is attached to the N-terminal nitrogen of the selected peptides LDIFSDF and LDIFSDFR, via solid-phase synthesis, to "mimic" the tightly held charge of a protonated arginine (Arg) residue. Collision-induced dissociation in a quadrupole ion trap instrument and surface-induced dissociation in a dual quadrupole instrument were performed for electrospray-generated ions of the fixed-charge peptide derivatives. Selective cleavages at Asp-Xxx are observed for those ions with charge provided only by the fixed charge or for those with a fixed charge and one Arg plus one added proton. This supports a previously proposed mechanism which suggests that the cleavages at Asp-Xxx, initiated by the acidic hydrogen of the Asp residue, become significant when ionizing protons are strongly bound by Arg in the protonated peptides. It is clear that the fixed charge is indeed serving as a "mimic" of protonated Arg and that a protonated Arg side chain is not required to interact with the Asp to induce cleavage at Asp-Xxx. When the number of protons exceeds the number of Arg in a peptide containing Arg and Asp, nonselective cleavages occur. The fragmentation efficiency of the peptides is consistent with the idea that these nonselective cleavages are promoted by a mobile proton. The peptide with a fixed charge and one added proton, phi3P+CH2C(=O)-LDIFSDF + H]2+, fragments much more efficiently than the corresponding peptide with a fixed charge, an Arg and one added proton, phi3P+CH2C(=O)-LDIFSDFR + H]2+; both of these fragment more efficiently than the peptide with a fixed charge and no added proton, phi3P+CH2C(=O)-LDIFSDF. MS/MS/MS (i.e., MS3) experimental results for bn ions formed at Asp-Xxx from phi3P+CH2C(=O)-LDIFSDF and its H/D exchange derivative, phi3P+CH2C(=O)-LDIFSDF-d11, are consistent with the bn ions formed at Asp-Xxx having a succinic anhydride cyclic structure. MS/MS experiments were also carried out for phi3P+CH2C(=O)-AAAA, a peptide derivative containing active hydrogens only at amide nitrogens plus the C-terminus, and its active H/D exchange product, phi3P+CH2C(=O)-AAAA-d5. The results show that a hydrogen originally located at an amide nitrogen is transferred away in the formation of a cyclic charge remote b ion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号