首页 | 本学科首页   官方微博 | 高级检索  
     

一类连续状态与动作空间下的加权Q学习
引用本文:程玉虎,易建强,王雪松,赵冬斌. 一类连续状态与动作空间下的加权Q学习[J]. 电机与控制学报, 2005, 9(6): 570-574
作者姓名:程玉虎  易建强  王雪松  赵冬斌
作者单位:中国矿业大学,信息与电气工程学院,江苏,徐州,221008;中国科学院自动化研究所,复杂系统与智能科学实验室,北京,100080
基金项目:中国矿业大学校科研和教改项目
摘    要:针对连续状态与动作空间下的控制问题,提出了一类连续状态与动作空间下的加权Q学习算法,应用改进的增长神经气算法动态构建径向基网络的隐合层,实现状态空间的自适应构建。在基于径向基网络实现的标准Q学习基础上,利用加权Q学习算法用以解决具有连续动作输出的控制问题。仿真实例验证了所提算法的有效性。

关 键 词:连续状态空间  连续动作空间  加权Q学习  神经气算法  径向基网络
文章编号:1007-449X(2005)06-0570-05
收稿时间:2004-07-26
修稿时间:2005-03-03

A kind of weighted Q-learning for continuous state and action spaces
CHENG Yu-hu,YI Jian-qiang,WANG Xue-song,ZHAO Dong-bin. A kind of weighted Q-learning for continuous state and action spaces[J]. Electric Machines and Control, 2005, 9(6): 570-574
Authors:CHENG Yu-hu  YI Jian-qiang  WANG Xue-song  ZHAO Dong-bin
Abstract:Aiming at control problems of continuous state and action spaces, a kind of weighted Q-learning was proposed to solve the application under the condition of continuous state and action spaces. The hidden layer of RBF network was designed dynamically by virtue of the modified growing neural gas algorithm so as to realize the adaptive understanding of the continuous state space. Based on the standard Q-learning implemented by RBF network, the weighted Q-learning was used to solve the control problem with continuous action outputs. Simulation result verified the validity of the algorithm.
Keywords:continuous state space    continuous action space    weighted Q-learning   neural gas algorithm,RBF network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号