首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小二乘支持向量机的振动传感器故障诊断
引用本文:高杨,史丽萍,吴旭东,张增生,温泉. 基于最小二乘支持向量机的振动传感器故障诊断[J]. 机械与电子, 2009, 0(5): 37-39
作者姓名:高杨  史丽萍  吴旭东  张增生  温泉
作者单位:中国矿业大学信息与电气工程学院,江苏,徐州,221008
摘    要:针对目前机械故障诊断中,难以获得大量的故障数据样本以及诊断知识获取困难等不足,提出了专门针对有限样本的新一代机器学习的算法——最小二乘支持向量机(LS—SVM),它能够得到现有信息下,不仅是样本数趋于无穷大时的最优解,因此,在样本很少的情况下具有较好的泛化能力,比较适合解决故障诊断小样本情况的实际问题。本文介绍了LS-SVM的基本原理和分类方法,并利用其对振动传感器的常见故障进行诊断,结果表明了LS—SVM对设备故障具有良好的分类效果。

关 键 词:最小二乘支持向量机  故障诊断  振动传感器

Fault Diagnosis of Vibration Sensor Based on Least Squares Support Vector Machines
GAO Yang,SHI Li-ping,WU Xu-dong,ZHANG Zeng-sheng,WEN Quan. Fault Diagnosis of Vibration Sensor Based on Least Squares Support Vector Machines[J]. Machinery & Electronics, 2009, 0(5): 37-39
Authors:GAO Yang  SHI Li-ping  WU Xu-dong  ZHANG Zeng-sheng  WEN Quan
Affiliation:School of Information and Electrical Engineering;China University of Mining and Technology;Xuzhou 221008;China
Abstract:It is difficult to acquire lots of fault data and diagnostic knowledge in current mechanical fault diagnosis.The paper presents a new machine-learning algorithm-least squares support vector machines(LS-SVM),which can acquire the most optimal solution on the limited sample data instead of that on the infinite sample data.LS-SVM specially aims at the small-sample cases,so it has better generalization ability when the data is few,and it is fit to solve the practical problems contained few sample data.The paper...
Keywords:LS-SVM  fault diagnosis  vibration sensor  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号