首页 | 本学科首页   官方微博 | 高级检索  
     


Structure and properties of a rapidly solidified Al-Li-Mn-Zr Alloy for high-temperature applications: Part I. inert gas atomization processing
Authors:Michael Ruhr  Joseph Baram
Affiliation:(1) Materials Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Abstract:A new Al-Li alloy containing 2.3 wt pct Li, 6.5 wt pct Mn, and 0.65 wt pet Zr, for high-temperature applications, has been processed by a rapid solidification (RS) technique (as powders by inert gas atomization) and then thermomechanically treated by hot isostatic pressing (hipping) and hot extrusion. As-received and thermomechanically treated powders (of various size fractions) were characterized by X-ray diffraction and scanning and transmission electron microscopy (SEM and TEM, respectively). Phase analyses in the as-processed materials revealed the presence of two Mn phases (Al4Mn and Al6Mn), one Zr phase (Al3Zr), two Li phases (the stable AlLi and the metastable Al3Li), and the αAl solid solution with high excess in Mn solubility (up to close the nominal composition in the as-atomized powders). Extruded pieces were solutionized at 370 °C and 530 °C for various soaking times (2 to 24 hours). A variety of aging treatments was practiced to check for the optimal (for tensile properties) aging procedure, which was found to be the following: solutioning at 370 °C for 2 hours and water quenching + 1 pct mechanical stretching + one step aging at 120 °C for 3 hours. The mechanical properties, at room and elevated temperatures, of the “hipped” and hot extruded powders are compared following the optimal solutioning and aging treatments. The results indicate that Mn is indeed a favorable alloying element for rapidly solidified Al-Li alloys to retain about 85 to 95 pct of the room-temperature tensile properties even at 250 °C, though room-temperature strength is not satisfactory in itself. However, specific moduli are by 20 to 25 pet higher than those of the 2024 series duralumin-type alloys. Ductilities at room temperatures are in the low 1 to 2.5 pct range and show no improvement over other Al-Li alloys.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号