首页 | 本学科首页   官方微博 | 高级检索  
     


Epoxidized pine oil‐siloxane: Crosslinking kinetic study and thermomechanical properties
Authors:Manjusri Misra  Amar K Mohanty
Affiliation:1. Bioproducts Discovery and Development Centre, University of Guelph, Guelph, Ontario, Canada;2. School of Engineering, Thornbrough Building, University of Guelph, Guelph, Ontario, Canada
Abstract:In this study, a novel approach to toughen biobased epoxy polymer with different types of siloxanes was explored. Three different modified siloxanes, e.g., amine‐terminated polydimethyl siloxane (PDMS‐amine), glycidyl‐terminated polydimethyl siloxane (PDMS‐glycidyl), and glycidyl‐terminated polyhedral oligomeric silsesquioxane (POSS‐glycidyl) were used as toughening agents. The curing and kinetics of bioepoxy was investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy. The mechanical, thermal, and morphological properties of the cured materials were investigated. Rheological characterization revealed that the inclusion of POSS‐glycidyl slightly increased the complex viscosity compared to the neat resin. The morphology of the cured bioresin was characterized by transmission electron microscopy and scanning electron microscopy. The inclusion of POSS‐glycidyl to bioepoxy resin resulted in a good homogeneity within the blends. The inclusion of PDMS‐amine or PDMS‐glycidyl was shown to have no effect on tensile and flexural properties of the bioresins, but led to a deterioration in the impact strength. However, the inclusion of POSS‐glycidyl enhanced the impact strength and elongation at break of the bioresins. Dynamic mechanical analysis showed that the siloxane modified epoxy decreased the storage modulus of the bioresins. The thermal properties, such as decomposition temperature, coefficient of linear thermal expansion, and heat deflection temperature were improved by inclusion of POSS‐glycidyl. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42451.
Keywords:biopolymers and renewable polymers  blends  crosslinking  mechanical properties  thermosets
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号