摘 要: | 该文针对一维C~1有限元提出一种新型后处理超收敛算法,由该法可求得全域超收敛的位移和内力。该法在单个单元上逐单元实施,通过将单元端部结点位移有限元解设为本质边界条件,在单元域上建立单元位移恢复的局部边值问题。对该局部边值问题,以单元内任一点为结点将单元划分为两个子单元进行有限元求解,子单元次数与原单元相同,由此获得该点位移的超收敛解。对单元内所有点均作这样的超收敛求解,可获得整个单元上位移的超收敛解。该位移超收敛解光滑、连续,通过对该位移超收敛解求导可获得转角和内力的超收敛解。数值结果表明,对于m次元,该法得到的挠度和转角具备与结点位移相同的h~(2m-2)阶的最佳收敛阶;弯矩和剪力则分别具备h~(2m-3)、h~(2m-4)阶的收敛阶,均比相应有限元解高出m-2阶。该法可靠、高效、易于实施,是一种颇具潜力的后处理超收敛算法。
|