首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical simulation of the plastic flow properties of iron single crystals
Authors:M Brünig
Affiliation:(1) Present address: Lehrstuhl für Baumechanik-Statik, Universität Dortmund, D-44221 Dortmund, Germany
Abstract:Summary The present paper deals with the numerical simulation of the plastic flow properties of iron single crystals as well as their influence on the macroscopic elastic-plastic deformation and localization behavior affected by superimposed hydrostatic pressure. Based on experimental observations the onset of plastic yielding on the microscale is described by an extended microscopic yield condition taking into account various microscopic stress components acting on the respective slip systems. In addition, to be able to compute inelastic deformations from a plastic potential, the latter is expressed in terms of workconjugate microscopic stress and strain measures which leads to a non-associated flow rule for the macroscopic plastic strain rate. On the numerical side, generalized functions for constitutive parameters will be used to be able to simulate the single crystal's microscopic deformation behavior observed in experiments. Estimates of the current microscopic stresses and strains are obtained via an efficient and remarkably stable plastic predictor-elastic corrector technique which is incorporated into a nonlinear finite element program. Numerical simulations of uniaxial tests show quantitatively the influence of hydrostatic pressure on current material data. Further numerical studies on the additional constitutive non-Schmid terms elucidate their effect on iron single crystal's macroscopic deformation and localization behavior.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号