首页 | 本学科首页   官方微博 | 高级检索  
     


Improvement of InGaN/GaN laser diodes by using a Si-doped In/sub 0.23/Ga/sub 0.77/N/GaN short-period superlattice tunneling contact layer
Authors:Ru-Chin Tu Chun-Ju Tun Sheu  JK Wei-Hong Kuo Te-Chung Wang Ching-En Tsai Jung-Tsung Hsu Chi  J Gou-Chung Chi
Affiliation:Opto-Electron. & Syst. Labs., Ind. Technol. Res. Inst., Hsinchu, Taiwan;
Abstract:InGaN/GaN multiple-quantum-well laser diode (LD) structures, including an Si-doped n/sup +/-In/sub 0.23/Ga/sub 0.77/N/GaN short-period superlattice (SPS) tunneling contact layer, are grown on c-face sapphire substrates by metalorganic vapor-phase epitaxy. The In/sub 0.23/Ga/sub 0.77/N/GaN(n/sup +/)-GaN(p) tunneling junction, which uses a low-resistivity n/sup +/-In/sub 0.23/Ga/sub 0.77/N/GaN SPS instead of a high-resistivity p-type GaN as a top contact layer, allows the reverse-biased tunnel junction to form a "quasi-ohmic" contact. Experimental results indicate that LDs with n/sup +/-In/sub 0.23/Ga/sub 0.77/N/GaN SPS contacting layers can achieve a lower threshold current and longer lasing duration under pulsed operation. Moreover, when the input pulse width is lengthened from 300 ns to 2 /spl mu/s, the lasing duration of the LD with Pt ohmic contact is three times longer than that of the LD with Ni/Au ohmic contacts. Therefore, we conclude that nitride-based LDs with an SPS reversed-tunneling contact layer may significantly reduce the contact resistance of an anode electrode and thereby increase the thermal stability of the device reliability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号