首页 | 本学科首页   官方微博 | 高级检索  
     

基于分拣机器人零售电商订单动态聚类及仿真
引用本文:王晨,尹静,王红春. 基于分拣机器人零售电商订单动态聚类及仿真[J]. 包装工程, 2020, 41(3): 170-175
作者姓名:王晨  尹静  王红春
作者单位:北京建筑大学 a.机电与车辆工程学院,北京 102616,北京建筑大学 a.机电与车辆工程学院,北京 102616,北京建筑大学 b.经济管理学院,北京 102616
基金项目:国家自然科学基金(61772062)
摘    要:目的提高电商物流配送中心订单的分拣效率和动态响应能力。方法通过分析零售电商订单的多品种、小批量和高时效等特征,考虑分拣机器人动作与载重约束,提出了滚动时窗调度策略和高维稀疏动态聚类算法,并以某大型电商企业配送中心建立仿真实验模型,进行数据对比分析。结果以某大型电商某日高峰时段500个订单进行仿真实验,与固定组批分拣策略进行对比,优化后的分拣策略在机器人平均搬运距离上减少了66.9%,分拣时间降低了23.9%。结论高维稀疏动态聚类策略有效提高了分拣效率,降低了分拣成本,算法方式更加开放灵活,对于电商企业物流业务降本增效具有重要意义。

关 键 词:电商物流订单  分拣机器人  动态聚类  分拣策略  仿真
收稿时间:2019-10-29
修稿时间:2020-02-10

Dynamic Clustering and Simulation of Retail E-commerce Order Based on Sorting Robot
WANG Chen,YIN Jing and WANG Hong-chun. Dynamic Clustering and Simulation of Retail E-commerce Order Based on Sorting Robot[J]. Packaging Engineering, 2020, 41(3): 170-175
Authors:WANG Chen  YIN Jing  WANG Hong-chun
Affiliation:a.School of Mechanical and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China,a.School of Mechanical and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China and b.School of Economics and Management, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
Abstract:The work aims to improve the sorting efficiency and dynamic response capability of orders for e-commerce logistics distribution centers. Based on analyzing such factors as the characteristics of retail e-commerce orders with multiple varieties, small batches and high aging, movement and load constraints of sorting robots were taken into consideration; a rolling window scheduling strategy and a high-dimensional sparse dynamic clustering algorithm were proposed, and a simulation experiment model of a large-scale e-commerce distribution center was established for data comparison analysis. The simulation experiment was carried out on 500 orders of an e-commerce enterprise in rush hours. Compared with the fixed batch sorting strategy, the optimized sorting strategy reduced the average moving distance of the robot by 66.9% and the sorting time by 23.9%. The conclusion is that the high-dimensional sparse dynamic clustering strategy effectively improves the sorting efficiency, reduces the sorting cost, and the algorithm is more open and flexible. It is of great significance for the e-commerce enterprise to reduce costs and increase efficiency of logistics business.
Keywords:E-commerce logistics   high-dimensional sparse clustering   sorting robot   sorting strategy   simulation
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《包装工程》浏览原始摘要信息
点击此处可从《包装工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号