首页 | 本学科首页   官方微博 | 高级检索  
     


Factors influencing the removal of divalent cations by hydroxyapatite
Authors:Smiciklas I  Onjia A  Raicević S  Janaćković D  Mitrić M
Affiliation:Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia. ivanat@vin.bg.ac.yu
Abstract:The effect of pH, contact time, initial metal concentration and presence of common competing cations, on hydroxyapatite (HAP) sorption properties towards Pb(2+), Cd(2+), Zn(2+), and Sr(2+) ions was studied and compared using a batch technique. The results strongly indicated the difference between the sorption mechanism of Pb(2+) and other investigated cations: the removal of Pb(2+) was pH-independent and almost complete in the entire pH range (3-12), while the sorption of Cd(2+), Zn(2+) and Sr(2+) generally increased with an increase of pH; the contact time required for attaining equilibrium was 30 min for Pb(2+) versus 24h needed for other cations; maximum sorption capacity of HAP sample was found to be an order of magnitude higher for Pb(2+) (3.263 mmol/g), than for Cd(2+) (0.601 mmol/g), Zn(2+) (0.574 mmol/g) and Sr(2+) (0.257 mmol/g); the selectivity of HAP was found to decrease in the order Pb(2+)>Cd(2+)>Zn(2+)>Sr(2+) while a decrease of pH(PZC), in respect to the value obtained in inert electrolyte, followed the order Cd(2+)>Zn(2+)>Pb(2+)>Sr(2+); neither of investigated competing cations (Ca(2+), Mg(2+), Na(+) and K(+)) influenced Pb(2+) immobilization whereas the sorption of other cations was reduced in the presence of Ca(2+), in the order Sr(2+)>Cd(2+)>or=Zn(2+). The pseudo-second order kinetic model and Langmuir isotherm have been proposed for modeling kinetic and equilibrium data, respectively. The sorption of all examined metals was followed by Ca(2+) release from the HAP crystal lattice and pH decrease. The ion exchange and specific cation sorption mechanisms were anticipated for Cd(2+), Zn(2+) and Sr(2+), while dissolution of HAP followed by precipitation of hydroxypyromorphite (Pb(10)(PO(4))(6)(OH)(2)) was found to be the main operating mechanism for Pb(2+) immobilization by HAP, with the contribution of specific cation sorption.
Keywords:Hydroxyapatite   Cation sorption   Equilibrium   Kinetics   Sorption mechanisms   pHPZC
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号