首页 | 本学科首页   官方微博 | 高级检索  
     

基于反馈调控参数的BP学习算法研究
引用本文:苏小红,王亚东,马培军. 基于反馈调控参数的BP学习算法研究[J]. 哈尔滨工业大学学报, 2005, 37(10): 1311-1314
作者姓名:苏小红  王亚东  马培军
作者单位:哈尔滨工业大学,计算机科学与技术学院,黑龙江,哈尔滨,150001;哈尔滨工业大学,计算机科学与技术学院,黑龙江,哈尔滨,150001;哈尔滨工业大学,计算机科学与技术学院,黑龙江,哈尔滨,150001
基金项目:国家自然科学基金资助项目(69975005).
摘    要:为解决经遗传算法优化后的BP网络极易陷入饱和区域而导致网络学习停滞的问题,基于神经生理解剖学关于神经电位脉冲发放系统和神经递质系统的耦合机理,提出一种改进的基于反馈调控参数的BP学习算法,通过反馈调控参数对神经元的节点输出进行扰动,避免学习过程中发生权值调整量趋于。的问题,从而解决经遗传算法优化后的BP网络容易出现的饱和区域问题.仿真实验结果表明,该方法能有效克服饱和区域引起的学习停滞问题,提高BP网络对遗传算法优化结果的精确定位能力,而且还具有收敛速度快和稳定性好的优点和在较大权值空间中的寻优能力.

关 键 词:多层前馈网络  误差反向传播学习算法  饱和区域问题
文章编号:0367-6234(2005)10-1311-04
收稿时间:2004-04-22
修稿时间:2004-04-22

Research on back-propagation learning algorithm based on weight adjustment parameters
SU Xiao-hong,WANG Ya-dong,MA Pei-jun. Research on back-propagation learning algorithm based on weight adjustment parameters[J]. Journal of Harbin Institute of Technology, 2005, 37(10): 1311-1314
Authors:SU Xiao-hong  WANG Ya-dong  MA Pei-jun
Abstract:When the initial weights and thresholds of back-propagation network are optimized by genetic algorithm,the learning process is more likely trapped into "flat spot" which results in slow or even suppressed learning process and weight adjustment due to the large scope of weight-initializing in genetic algorithm.To solve this problem and inspired by the research fruits of neuroscience and physiological anatomy,an improved learning algorithm based on weight adjustment parameters is proposed.It avoids premature saturation problem that the weight adjustment reaching zero by introducing an excitation unit into the neuron model to excitation the back-propagated error signal.Simulation results show that the new method can avoid the learning process being trapped into the "flat spot" efficiently and improve the capability of fine-tuning to the result optimized by the genetic algorithm.The new algorithm also outperforms the other traditional methods in terms of the convergence rate,stability,and the capability of searching optimum in large space.
Keywords:Multi-layer back-propagation networks  error back-propagation(BP) learning algorithm  flat spot(or premature saturation) problem
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号