首页 | 本学科首页   官方微博 | 高级检索  
     

基于稀疏分解残差的氢气传感器故障探测与辨识方法
引用本文:韦宝泉,付智辉,邓芳明,吴翔,谭畅. 基于稀疏分解残差的氢气传感器故障探测与辨识方法[J]. 传感器与微系统, 2017, 36(8). DOI: 10.13873/J.1000-9787(2017)08-0032-03
作者姓名:韦宝泉  付智辉  邓芳明  吴翔  谭畅
作者单位:华东交通大学电气与自动化工程学院,江西南昌,330013
基金项目:国家自然科学基金资助项目,江西省自然科学基金资助项目,江西省重点研发计划项目,江西省教育厅科学技术项目
摘    要:针对传感器故障探测和诊断,提出了一种基于稀疏分解残差的氢气传感器故障探测和辨识方法.基于信号稀疏分解理论,对采集的传感器正常信号数据集,利用K奇异值分解(K-SVD)学习算法得到一超完备字典D;在字典上对非正常(故障)信号进行分解,根据稀疏分解的残差大小和范围完成对传感器故障的探测及辨识.实验结果表明:对氢气传感器的故障探测率和总辨识率分别达到98.75%和97.25%,可以有效地解决氢气传感器的故障探测和辨识.

关 键 词:氢气传感器  故障探测  故障辨识  稀疏分解  K奇异值分解

Fault detection and identification method for hydrogen sensor based on residual of spares decomposition
WEI Bao-quan,FU Zhi-hui,DENG Fang-ming,WU Xiang,TAN Chang. Fault detection and identification method for hydrogen sensor based on residual of spares decomposition[J]. Transducer and Microsystem Technology, 2017, 36(8). DOI: 10.13873/J.1000-9787(2017)08-0032-03
Authors:WEI Bao-quan  FU Zhi-hui  DENG Fang-ming  WU Xiang  TAN Chang
Abstract:Aiming at detection and diagnosis of sensor,a fault detection and identification method for hydrogen sensor based on residual of spares decomposition is proposed. The method bases on theory of signal spares representation,collects the normal signal data of hydrogen sensor to learn an over-complete dictionary D by K-SVD learning algorithm firstly,then uses the dictionary D to decompose abnormal (fault ) signals and get the decomposed residuals. Finally,according to size and range of the residuals,the sensor faults can be detected and identified. The experiment results show that for hydrogen sensor,the detection and total recognition rate of the proposed method reachs to 98. 75% and 97. 25% respectively,which can be applied to detect and identify the fault of hydrogen sensor effectively.
Keywords:hydrogen sensor  fault detection  fault identification  spares decomposition  K-singular value decomposition(K-SVD)
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号