首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的面罩语音识别
引用本文:王霞,杜桂明,王光艳,张艳. 基于卷积神经网络的面罩语音识别[J]. 传感器与微系统, 2017, 36(10). DOI: 10.13873/J.1000-9787(2017)10-0031-04
作者姓名:王霞  杜桂明  王光艳  张艳
作者单位:1. 河北工业大学电子信息工程学院,天津,300401;2. 天津商业大学信息工程学院,天津,300134
基金项目:天津市自然科学基金重点资助项目
摘    要:针对带噪面罩语音识别率低的问题,结合语音增强算法,对面罩语音进行噪声抑制处理,提高信噪比,在语音增强中提出了一种改进的维纳滤波法,通过谱熵法检测有话帧和无话帧来更新噪声功率谱,同时引入参数控制增益函数;提取面罩语音信号的Mel频率倒谱系数(MFCC)作为特征参数;通过卷积神经网络(CNN)进行训练和识别,并在每个池化层后经局部响应归一化(LRN)进行优化.实验结果表明:该识别系统能够在很大程度上提高带噪面罩语音的识别率.

关 键 词:面罩语音识别  卷积神经网络  语音增强  维纳滤波法

Mask speech recognition based on convolutional neural network
WANG Xia,DU Gui-ming,WANG Guang-yan,ZHANG Yan. Mask speech recognition based on convolutional neural network[J]. Transducer and Microsystem Technology, 2017, 36(10). DOI: 10.13873/J.1000-9787(2017)10-0031-04
Authors:WANG Xia  DU Gui-ming  WANG Guang-yan  ZHANG Yan
Abstract:Aiming at problem of low mask speech recognition rate of noise mask speech,mask speech recognition method based on improved convolutional neural network (CNN ) is proposed. Combine speech enhancement algorithm to suppress noise of mask speech and increase signal-to-noise ratio(SNR). An improved Wiener filtering algorithm is proposed for speech enhancement. Using spectral entropy algorithm to detect the frame which has speech to update noise power spectrum. At the same time,introducing parameter β to control gain function. Extract Mel frequency cepstrum coefficient(MFCC) as characteristic parameters. Use CNN for training and recognization. The CNN includes two convolution layers,two pooling layers,one fully connected layer and a softmax classifier. And add local response normalization(LRN) after every pooling layer to optimize CNN. The experimental results show that the recognition system can greatly improve the recognition rate of noisy mask speech.
Keywords:mask speech recognition  convolutional neural network (CNN )  speech enhancement  Wiener filtering algorithm
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号