首页 | 本学科首页   官方微博 | 高级检索  
     

改进加权Slope one协同过滤推荐算法研究
引用本文:王潘潘,钱谦,王锋. 改进加权Slope one协同过滤推荐算法研究[J]. 传感器与微系统, 2017, 36(7). DOI: 10.13873/J.1000-9787(2017)07-0138-04
作者姓名:王潘潘  钱谦  王锋
作者单位:云南省计算机技术应用重点实验室昆明理工大学,云南昆明,650200
基金项目:国家自然科学基金资助项目
摘    要:协同过滤推荐是最成功的推荐技术之一,但数据稀疏性问题导致推荐准确度和推荐效率不高.针对这个问题,提出了一种改进的加权Slope one协同过滤推荐算法.计算用户之间的评分相似度,找出每个用户的最近邻;根据最近邻用户评分,使用基于用户的协同过滤和改进的加权Slope one算法的加权评分预测目标用户的未评分项目;给出推荐.实验过程中采用MovieLens数据集作为测试数据.实验结果表明:与原算法相比,算法提高了预测准确度,有效提高了推荐性能.

关 键 词:数据稀疏  用户相似性  协同过滤  最近邻用户  加权Slope one算法

Study on improved weighted Slope one collaborative filtering algorithm
WANG Pan-pan,QIAN Qian,WANG Feng. Study on improved weighted Slope one collaborative filtering algorithm[J]. Transducer and Microsystem Technology, 2017, 36(7). DOI: 10.13873/J.1000-9787(2017)07-0138-04
Authors:WANG Pan-pan  QIAN Qian  WANG Feng
Abstract:Collaborative filtering is one of the most successful recommendation technologies,but the data sparsity results in low recommendation accuracy and poor efficiency.So an improved weighted Slope one and collaborative filtering algorithm is proposed.Based on users' ratings,it calculates the similarity between users,so that to find user' s the nearest neighbors.Based on the score of user' s nearest neighbors,user-based collaborative filtering and weighted Slope one algorithm is used to predict the unknown rating of the target users and to present recommendation results.In the experiment,MovieLens data set is used as test data.The experimental results suggest that the improved algorithm improves prediction accuracy and recommendation performance.
Keywords:data sparsity  user similarity  collaborative filtering  nearest neighbors  weighted Slope one algorithm
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号