首页 | 本学科首页   官方微博 | 高级检索  
     

分组随机化隐私保护频繁模式挖掘
引用本文:郭宇红,童云海,苏燕青. 分组随机化隐私保护频繁模式挖掘[J]. 软件学报, 2021, 32(12): 3929-3944
作者姓名:郭宇红  童云海  苏燕青
作者单位:国际关系学院 网络空间安全学院,北京 100091;北京大学 智能科学系,北京 100871
基金项目:国家自然科学基金(60403041);中央高校基本科研业务费专项资金(3262017T48,3262018T02)
摘    要:已有的隐私保护频繁模式挖掘随机化方法不考虑隐私保护需求差异性,对所有个体运用统一的随机化参数,实施同等的保护,无法满足个体对隐私的偏好.提出基于分组随机化的隐私保护频繁模式挖掘方法(grouping-based randomization for privacy preserving frequent pattern mining,简称GR-PPFM).该方法根据不同个体的隐私保护要求进行分组,为每一组数据设置不同的隐私保护级别和与之相适应的随机化参数.在合成数据和真实数据中的实验结果表明:相对于统一单参数随机化mask,分组多参数随机化GR-PPFM不仅能够满足不同群体多样化的隐私保护需求,还能在整体隐私保护度相同情况下提高挖掘结果的准确性.

关 键 词:分组  随机化  个性化  隐私保护  频繁模式挖掘
收稿时间:2019-08-28
修稿时间:2020-04-04

Privacy Preserving Frequent Pattern Mining Based on Grouping Randomization
GUO Yu-Hong,TONG Yun-Hai,SU Yan-Qing. Privacy Preserving Frequent Pattern Mining Based on Grouping Randomization[J]. Journal of Software, 2021, 32(12): 3929-3944
Authors:GUO Yu-Hong  TONG Yun-Hai  SU Yan-Qing
Affiliation:School of Cyber Science and Engineering, University of International Relations, Beijing 100091, China;Department of Machine Intelligence, Peking University, Beijing 100871, China
Abstract:Existing randomization methods of privacy preserving frequent pattern mining use a uniform randomization parameter for all individuals, without considering the differences of privacy requirements. This equal protection cannot satisfy individual preferences for privacy. This study proposes a method of privacy preserving frequent pattern mining based on grouping randomization (referred to as GR-PPFM). In this method, individuals are grouped according to their different privacy protection requirements. Different group of data is assigned to different privacy protection level and corresponding random parameter. The experimental results of both synthetic and real- world data show that compared with the uniform single parameter randomization of mask, grouping randomization with multi parameters of GR-PPFM can not only meet the needs of different groups of diverse privacy protection, but also improve the accuracy of mining results with the same overall privacy protection.
Keywords:grouping  randomization  personalization  privacy preserving  frequent pattern mining
本文献已被 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号