首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation, modeling, and crystal growth of Cd0.9Zn0.1Te for nuclear spectrometers
Authors:Krishna C. Mandal  Sung Hoon Kang  Michael Choi  Job Bello  Lili Zheng  Hui Zhang  Michael Groza  Utpal N. Roy  Arnold Burger  Gerald E. Jellison  David E. Holcomb  Gomez W. Wright  Joseph A. Williams
Affiliation:(1) EIC Laboratories, Inc., 111 Downey Street, 02062 Norwood, MA;(2) Department of Mechanical Engineering, State University of New York at Stony Brook, 11794 Stony Brook, NY;(3) Center of Excellence in Physics and Chemistry of Materials, Fisk University, 37208 Nashville, TN;(4) Oak Ridge National Laboratory, 37831 Oak Ridge, TN
Abstract:High-quality, large (10 cm long and 2.5 cm diameter), nuclear spectrometer grade Cd0.9Zn0.1Te (CZT) single crystals have been grown by a controlled vertical Bridgman technique using in-house zone refined precursor materials (Cd, Zn, and Te). A state-of-the-art computer model, multizone adaptive scheme for transport and phase-change processes (MASTRAP), is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown CZT crystal and optimize the thermal profile. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The grown semi-insulating (SI) CZT crystals have demonstrated promising results for high-resolution room-temperature radiation detectors due to their high dark resistivity (ρ≈2.8 × 1011 Θ cm), good charge-transport properties [electron and hole mobility-life-time product, μτe≈(2–5)×10−3 and μτh≈(3–5)×10−5 respectively, and low cost of production. Spectroscopic ellipsometry and optical transmission measurements were carried out on the grown CZT crystals using two-modulator generalized ellipsometry (2-MGE). The refractive index n and extinction coefficient k were determined by mathematically eliminating the ∼3-nm surface roughness layer. Nuclear detection measurements on the single-element CZT detectors with 241Am and 137Cs clearly detected 59.6 and 662 keV energies with energy resolution (FWHM) of 2.4 keV (4.0%) and 9.2 keV (1.4%), respectively.
Keywords:CZT  MASTRAP model  Bridgman technique  2-MGE  radiation detectors
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号