首页 | 本学科首页   官方微博 | 高级检索  
     


Design and applications of an X-band hybrid photoinjector
Authors:J.B. Rosenzweig  A. Valloni  D. AlesiniG. Andonian  N. BernardL. Faillace  L. FiccadentiA. Fukusawa  B. HiddingM. Migliorati  A. MostacciP. Musumeci  B. O'SheaL. Palumbo  B. SpataroA. Yakub
Affiliation:a UCLA Dept. of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, CA 90095, USA
b Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, via Enrico Fermi 40, Frascati (RM), Italy
c RadiaBeam Technologies, LLC, 1717 Stewart Ave., Santa Monica, CA 90404, USA
d Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Universita' degli Studi di Roma “La Sapienza”, Via Antonio Scarpa 14, Roma (RM) 00185, Italy
Abstract:An INFN-LNF/UCLA/URLS collaboration is developing a hybrid photoinjector in X-band. This device is an integrated structure consisting of initial standing wave gun cells connected at the input coupler to a traveling wave section. This design nearly eliminates RF reflections from the SW section; further, a 90° phase shift in the accelerating field at the coupling cell gives strong velocity bunching. The current initiative in X-band follows an S-band hybrid, now proceeding to construction at LNF and high power testing/beam production measurements at UCLA. This S-band hybrid has 1.5 cell SW and 9 cell TW sections, and produces strongly compressed 3.5 MeV beam. It can be used for novel applications; here we discuss the production of an exponential energy spectrum extending from 1 to 12 MeV to simulate the effects of radiation belt environments on space-craft. It can be optionally used with a 3 m TW linac fed from RF output of the hybrid, to boost the energy to 22 MeV. While scaling the design from S-band to X-band is conceptually simple, practical limits require changes in both RF and magnetostatic designs. As the field is limited by RF breakdown to 200 MV/m peak field, the SW section must be expanded to 2.5 cells to reach 3.5 MeV; this permits flexibility in the solenoid design. We present beam dynamics simulations that show 6D phase space compensation at 7 pC: sub-0.1 mm mrad at the emittance minimum that occurs simultaneously with a longitudinal focus of <20 fs rms. We discuss applications ranging from multi-THz coherent radiation production to ultra-fast electron diffraction.
Keywords:Photoinjector   Coherent radiation   Wakefield   Diffraction   Femtosecond
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号