首页 | 本学科首页   官方微博 | 高级检索  
     

二进神经网络的模式匹配学习
引用本文:陆阳, 魏臻, 韩江洪, 樊玉琦. 二进神经网络的模式匹配学习[J]. 电子与信息学报, 2003, 25(1): 74-79.
作者姓名:陆阳  魏臻  韩江洪  樊玉琦
作者单位:合肥工业大学计算机与信息学院,合肥,230009
基金项目:安徽省重点科研计划(No.01041175)资助项目
摘    要:二进神经网络的知识提取需要了解每个神经元的逻辑意义。一般来说,对二进神经网络学习结果的分析是困难的。该文提出了一种基于线性可分结构系结构分析的学习算法,采用这种方法对布尔空间的样本集合进行学习,得到的二进神经网络隐层神经元都归属于一类或几类线性可分结构系,只要这几类线性可分结构系的逻辑意义是清晰的,就可以分析整个学习结果的知识内涵。

关 键 词:二进神经网络   线性可分   模式匹配
收稿时间:2001-07-12
修稿时间:2001-07-12

The pattern match learning of binary neural networks
Lu Yang, Wei Zhen, Han Jianghong, Fan Yuqi. The pattern match learning of binary neural networks[J]. Journal of Electronics & Information Technology, 2003, 25(1): 74-79.
Authors:Lu Yang  Wei Zhen  Han Jianghong  Fan Yuqi
Affiliation:Computer and Information College efei Univ. of Tech.,Hefei 230009 China
Abstract:It is necessary to know the logical meaning of every binary neuron when extracting knowledge from a binary neural network. Generally, it is difficult to analyze learning results of a learning algorithm for binary neural networks. In this paper, a new learning method is presented which is based on analyzing a set of linear separable structures. The most important benefit of this method is all binary neurons belong to one or more types of linear separable structure sets. If those linear separable structure sets have clear logical meaning, the whole knowledge of binary neural networks can be dug out.
Keywords:Binary neural networks   Linear separability   Pattern match
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号