首页 | 本学科首页   官方微博 | 高级检索  
     


Novel wet-chemical synthesis and characterization of nanocrystalline CeO2 and Ce0.8Gd0.2O1.9 as solid electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC) applications
Authors:B. Rambabu  Samrat Ghosh  Hrudananda Jena
Affiliation:(1) Solid State Ionics Laboratory, Department of Physics, Southern University, Baton Rouge, Louisiana 70813, USA
Abstract:Novel wet-chemical methods of synthesis have been adopted to synthesize nano-crystalline CeO2 and Gd-substituted compositions aiming to explore an efficient oxide ion conducting solid electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. Nano-crystalline CeO2 powders were synthesized by combustion method using redox mixture of cerric ammonium nitrate or cerium nitrate and maleic acid or 1,3-dimethylurea and compared with high surface area CeO2 powders prepared by hydrothermal technique with microwave precipitated precursor from aqueous solutions of (NH4)2Ce(NO3)6 and urea. The grain size achieved by the hydrothermal technique is ∼7 nm which is smaller than that of commercial nano CeO2 powders. Conventional or microwave sintering was used to prepare dense Ce0.8Gd0.2O1.9 pellets from the ceria powders made of redox mixture of cerium nitrate, 1,3-dimethylurea (DMU) and Gd2O3 as the starting ingredients. The samples were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and ac impedance spectroscopy. The ionic conductivity measured for the pellet sintered at 1400 °C is 1 × 10−2 and 2.4 × 10−2 S/cm at 700 °C and 800 °C respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号