首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络用于电除盐产水水质预测研究
引用本文:徐波,贾铭椿,门金凤. 人工神经网络用于电除盐产水水质预测研究[J]. 广州化工, 2012, 0(4): 52-54
作者姓名:徐波  贾铭椿  门金凤
作者单位:海军工程大学,湖北武汉430033
摘    要:为了实现化工行业高纯水全自动生产,本文利用电除盐(electrodeionization,EDI)技术替代传统的混床技术,并研究了人工神经网络对EDI产水过程模拟仿真的可行性,采用误差反向传播网络(BP网络)建立了进水流量、电导率、pH值以及工作电压与EDI透过水电阻率之间关系的动态模型,并对不同的训练样本归一化方法和训练方法进行比较。结果表明,在网络隐含层层数为1、节点数为13时,采用归一化方法三能够较好的预测EDI透过水电阻率,且该模型可用于EDI除盐过程的动态描述,为实现化工行业高纯水全自动生产奠定了基础。

关 键 词:电除盐  电阻率  人工神经网络  隐含层节点  归一化方法

Prediction and Application of Artificial Neural Network for the Electrodeionization Product Water Quality
XU Bo,JIA Ming-chun,MEN Jin-feng. Prediction and Application of Artificial Neural Network for the Electrodeionization Product Water Quality[J]. GuangZhou Chemical Industry and Technology, 2012, 0(4): 52-54
Authors:XU Bo  JIA Ming-chun  MEN Jin-feng
Affiliation:XU Bo, JIA Ming - chun, MEN Jin -feng ( Naval University of Engineering, Wuhan Hubei 430033, China)
Abstract:Abstract: In order to achieve the automatic controlled process of producing high purity water in chemical engineering industries, ion exchange mixed bed was instead by electrodeionization (EDI) for boiler feedwater. The feasibility of simu- lation based on artificial neural network (ANN) for EDI producing pure water was also investigated. With error back prop- agation (BP) network, a dynamic simulation model showing the relationship between feed water flow rate, conductivity,pH value, operating voltage and outlet resistivity was established. Furthermore, the different training sample normalization methods were compared at different radbas node number. The results showed that the third normalization method to 1 rad- bas and 13 node number ANN were able to predict resistivity of EDI outlet accurately, and the simulation model can effec- tively describe the process of EDI producing high pure water, which laid the ground work for achieving the automatic con- trolled process of producing high purity water in chemical engineering industries.
Keywords:electrodeionization  resistivity  artificial neural network  radbas node  normalization method
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号