首页 | 本学科首页   官方微博 | 高级检索  
     


Gaussian,Lobatto and Radau positive quadrature rules with a prescribed abscissa
Authors:Bernhard Beckermann  Jorge Bustamante  Reinaldo Martínez-Cruz  José M. Quesada
Affiliation:1. Laboratoire Painlevé UMR 8524 (ANO-EDP), UFR Mathématiques, M3, UST Lille, 59655, Villeneuve d’Ascq Cedex, France
2. Facultad de Ciencias Físico-Matemáticas (FCFM), Benemerita Universidad Autonoma de Puebla (BUAP), Apartado Postal 1152, Pue. C.P. 72000, Puebla, México
3. Departamento de Matemáticas, Universidad de Jaén, Jaén, Spain
Abstract:For a given $theta in (a,b)$ , we investigate the question whether there exists a positive quadrature formula with maximal degree of precision which has the prescribed abscissa $theta $ plus possibly $a$ and/or $b$ , the endpoints of the interval of integration. This study relies on recent results on the location of roots of quasi-orthogonal polynomials. The above positive quadrature formulae are useful in studying problems in one-sided polynomial $L_1$ approximation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号