首页 | 本学科首页   官方微博 | 高级检索  
     


Achieving Organic Solar Cells with an Efficiency of 18.80% by Reducing Nonradiative Energy Loss and Tuning Active Layer Morphology
Authors:Xiaodong Si  Yuzhong Huang  Wendi Shi  Ruohan Wang  Kangqiao Ma  Yunxin Zhang  Simin Wu  Zhaoyang Yao  Chenxi Li  Xiangjian Wan  Yongsheng Chen
Affiliation:State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Abstract:The efficiency of organic solar cells (OSCs) is primarily limited by their significant nonradiative energy loss and unfavorable active layer morphology. Achieving high-efficiency OSCs by suppressing nonradiative energy loss and tuning the active layer morphology remains a challenging task. In this study, an acceptor named CH-ThCl is designed, featuring an extended conjugation central core, dichlorodithienoquinoxaline. The incorporation of chlorine-substituted extended conjugation in the central core enhances the acceptor's rigidity and promotes J-aggregation, leading to improved molecular luminescent efficiency and a reduction in nonradiative energy loss. A binary device based on PM6: CH-ThCl demonstrates a power conversion efficiency (PCE) of 18.16% and exhibits a high open-circuit voltage (Voc) of 0.934 V, attributed to the remarkably low nonradiative energy loss of 0.21 eV. Furthermore, a ternary device is fabricated by incorporating CH-6F as the third component, resulting in a significantly enhanced PCE of 18.80%. The ternary device exhibits improvements in short-circuit current (Jsc) and fill factor (FF) while maintaining the Voc, primarily due to the optimized active layer morphology. These results highlight the effectiveness of combining the reduction of nonradiative energy loss and precise tuning of the active layer morphology as a viable strategy for achieving high-efficiency OSCs.
Keywords:energy loss  morphology  non-fullerene acceptors  organic solar cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号