首页 | 本学科首页   官方微博 | 高级检索  
     


Solid Additive Delicately Controls Morphology Formation and Enables High-Performance in Organic Solar Cells
Authors:Lian Zhong  Zhe Sun  Seunglok Lee  Seonghun Jeong  Sungwoo Jung  Yongjoon Cho  Jeewon Park  Jaeyeong Park  Seong-Jun Yoon  Changduk Yang
Affiliation:1. School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919 South Korea;2. School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919 South Korea

Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA

Abstract:Volatile solid additives are an effective strategy for optimizing morphology and improving the power conversion efficiencies (PCEs) of organic solar cells (OSCs). Much research has been conducted to understand the role of solid additives in active layer morphology. However, it is crucial to delve deeper and understand how solid additives affect the entire morphology evolution process, from the solution state to the film state and the thermal annealing stage, which remains unclear. Herein, the use of a highly crystalline solid additive, phenoxathiin (Ph), in D18-Cl:N3-based OSCs and study its impact on morphology formation and photovoltaic performance is presented. Owing to its good miscibility with the acceptor N3, Ph additive can not only extend the time for the active layer to form from the solution state to the film state, but also provide sufficient time for acceptor aggregation. After thermal annealing, Ph solid additive volatilizes better aligned the N3 molecules and formed a favorable hybrid morphology. Consequently, the D18-Cl:N3–based OSC exhibited an outstanding PCE of 18.47%, with an enhanced short-circuit current of 27.50 mA cm−2 and a fill factor of 77.82%. This research is spurring the development of high-performance OSCs using solid additives that allow fine control during morphology development.
Keywords:extend film formation time  morphology formation  organic solar cells  volatile solid additives
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号