首页 | 本学科首页   官方微博 | 高级检索  
     

采样特异性因子及异常检测
引用本文:孙静宇,余雪丽,陈俊杰,李鲜花. 采样特异性因子及异常检测[J]. 山东大学学报(工学版), 2010, 40(5): 56-59
作者姓名:孙静宇  余雪丽  陈俊杰  李鲜花
作者单位:太原理工大学计算机科学与技术学院, 山西 太原 030024
基金项目:山西省自然科学基金资助项目 
摘    要:特异性因子是数据的重要特征之一,常通过累计数据之间的差异得到,是面向特异性挖掘的核心概念,然而遇到了计算时间复杂度过高的问题。本文在分析已有特异性因子定义特点及其计算算法时间复杂度的基础上,指出应该基于采样的方法定义特异性因子。给出了一种基于采样的特异性因子定义,即采样特异性因子(sampled peculiarity factor,SPF),并提出了一种基于SPF的异常检测算法。在真实数据集上进行对比实验,结果表明:该算法在检测异常数据时,精度降低不明显,而运行效率得以较大提高,这说明基于采样定义特异性因子的方法可行和更为合理。本文还指出采用合适的采样方法可经进一步优化SPF的计算过程,进而节约占用CPU时间和满足实时性要求高的应用。

关 键 词:采样  特异性因子  异常检测  数据挖掘  时间复杂度  实时性  
收稿时间:2010-05-20

Sampled peculiarity factor and its application in anomaly detection
SUN Jing-yu,YU Xue-li,CHEN Jun-jie,LI Xian-hua. Sampled peculiarity factor and its application in anomaly detection[J]. Journal of Shandong University of Technology, 2010, 40(5): 56-59
Authors:SUN Jing-yu  YU Xue-li  CHEN Jun-jie  LI Xian-hua
Affiliation:College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
Abstract:The peculiarity factor (PF), an important feature of data and obtained by accumulating differences between data, is a core concept of peculiarity-oriented mining (POM). But it meets a higher computational time complexity for any algorithm.A sampled approach firstly was suggested to define PF through analyzing current versions of PF and computational complexities of algorithms to compute it. A sampled PF (SPF) was proposed to meet real time requirement and a SPF outlier detection algorithm was given. Experiments using real datasets show that the SPF-outlier detection algorithm is efficient with losing a few of precisions through contrasting with two baseline algorithms and it is a feasible and right approach to define PF by sampling. Furthermore, some right sampling methods could be used to compute SPFs in order to meet real-time requirement.
Keywords:sampling  peculiarity factor  outlier detection  data mining  time complexity  real-time
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号