首页 | 本学科首页   官方微博 | 高级检索  
     

基于核函数的系统模型辨识
引用本文:梁军利,杨树元. 基于核函数的系统模型辨识[J]. 信号处理, 2006, 22(4): 573-576
作者姓名:梁军利  杨树元
作者单位:中国科学院声学研究所,中国科学院,北京,100080
摘    要:本文提出一种基于核函数的系统模型辨识方法。首先通过线性最小二乘确定低维空间中的非线性子空间,并经主分量分析提取与线性子空间基向量近似正交的非线性主分量,再经核密度估计进行聚类,自适应选择多个核将非线性子空间映射到高维空间,从而将任何一个线性和非线性的联合问题最终变成一个高维空间中的线性问题,最后借助线性最小二乘获得一个精确参数的系统模型。经过实验验证,该方法具有较好的效果。

关 键 词:最小二乘  聚类  核函数  主分量分析  非线性子空间  系统辨识
修稿时间:2004-11-22

System Model Identification Based on Kernel Function
Liang Junli,Yang Shuyuan. System Model Identification Based on Kernel Function[J]. Signal Processing(China), 2006, 22(4): 573-576
Authors:Liang Junli  Yang Shuyuan
Abstract:This paper presents a system model identification approach based on kernel function.The nonlinear subspace of low di- mension system space and its nonlinear principal components are abstracted in turns use of linear least square and PCA,and the latter which are orthogonal to base vectors of linear subspace are clustered through estimation of density,then being mapped form the nonlinear subspace of low dimensions into high dimension space by adaptively selecting several kernels,thus a problem consisted of linear and non- linear parts can be transformed into a linear one of high-dimension space.And a precise parameters model is got by use of least square adaptively.Finally,good experiments results are performed.
Keywords:least square  clustering  kernel function  principal components analysis  nonlinear subspace  system identification  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号