首页 | 本学科首页   官方微博 | 高级检索  
     


Cosupplementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation
Authors:SR Thomas  J Neuzil  R Stocker
Affiliation:Biochemistry Group, Heart Research Institute, Camperdown, Sydney, NSW, Australia.
Abstract:There is considerable interest in the ability of antioxidant supplementation, in particular with vitamin E, to attenuate LDL oxidation, a process implicated in atherogenesis. Since vitamin E can also promote LDL lipid peroxidation, we investigated the effects of supplementation with vitamin E alone or in combination with coenzyme Q on the early stages of the oxidation of isolated LDL. Isolated LDL was obtained from healthy subjects before and after in vitro enrichment with vitamin E (D-alpha-tocopherol, alpha-TOH) or dietary supplementation with D-alpha-TOH (1 g/d) and/or coenzyme Q (100 mg/d). LDL oxidation initiation was assessed by measurement of the consumption of alpha-TOH and cholesteryl esters containing polyunsaturated fatty acids and the accumulation of cholesteryl ester hydroperoxides during incubation of LDL in the transition metal-containing Ham's F-10 medium in the absence and presence of human monocyte-derived macrophages (MDMs). Native LDL contained 8.5 +/- 2 molecules of alpha-TOH and 0.5 to 0.8 molecules of ubiquinol-10 (CoQ10H2, the reduced form of coenzyme Q) per lipoprotein particle. Incubation of this LDL in Ham's F-10 medium resulted in a time-dependent loss of alpha-TOH with concomitant stoichiometric conversion of the major cholesteryl esters to their respective hydroperoxides. MDMs enhanced this process. LDL lipid peroxidation occurred via a radical chain reaction in the presence of alpha-TOH, and the rate of this oxidation decreased on alpha-TOH depletion. In vitro enrichment of LDL with alpha-TOH resulted in an LDL particle containing sixfold to sevenfold more alpha-TOH, and such enriched LDL was more readily oxidized in the absence and presence of MDMs compared with native LDL. In vivo alpha-TOH-deficient LDL, isolated from a patient with familial isolated vitamin E deficiency, was highly resistant to Ham's F-10-initiated oxidation, whereas dietary supplementation with vitamin E restored the oxidizability of the patient's LDL. Oral supplementation of healthy individuals for 5 days with either alpha-TOH or coenzyme Q increased the LDL levels of alpha-TOH and CoQ10H2 by two to three or three to four times, respectively. alpha-TOH-supplemented LDL was significantly more prone to oxidation, whereas CoQ10H2-enriched LDL was more resistant to oxidation initiation by Ham's F-10 medium than native LDL. Cosupplementation with both alpha-TOH and coenzyme Q resulted in LDL with increased levels of alpha-TOH and CoQ10H2, and such LDL was markedly more resistant to initiation of oxidation than native or alpha-TOH-enriched LDL. These results demonstrate that oral supplementation with alpha-TOH alone results in LDL that is more prone to oxidation initiation, whereas cosupplementation with coenzyme Q not only prevents this prooxidant activity of vitamin E but also provides the lipoprotein with increased resistance to oxidation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号