首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling of ductile fracture using the dynamic punch test
Authors:W Dabboussi  JA Nemes  
Affiliation:Department of Mechanical Engineering, McGill Institute for Advanced Materials, McGill University, Montreal, Quebec H3A 2K6, Canada
Abstract:Many models have been proposed for simulating events at quasi-static and dynamic rates. However, the Johnson–Cook constitutive model had been the workhorse for engineers and analysts when simulating such events, and it is readily available in the increasingly widespread numerical packages. Johnson and Cook also suggested a generalized failure model to be used with their constitutive model, but the challenge has always been in easily determining the correct parameters for these models. In this study, a procedure for determining the Johnson–Cook constitutive and, simplified, failure model parameters for three materials with specific importance in the aerospace industry, aluminum 6061-T6, titanium Ti-6Al-4 V and austenitic, nitrogen-strengthened, stainless steel (Nitronic 33) is proposed. Quasi-static and split Hopkinson pressure bar (SHPB) shear punch experiments were used to assess the materials’ ductility, while the quasi-static and SHPB compression experiments were used to determine the materials’ response. The laboratory results coupled with ABAQUS/Explicit simulations provided a tool for determination and validation of the models’ parameters for each material. While the use of the Johnson–Cook model with the proposed simplified failure model proved adequate for aluminum and titanium, the same could not be concluded for nitronic partly due to the intrinsic characteristics of this material and the multiplicative form of the Johnson–Cook model.
Keywords:High strain rate  Johnson–  Cook  Hopkinson Bar  Ductile fracture  Shear-punch
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号