首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of protein adsorption and binding at biosensor polymer interfaces using X-ray photon spectroscopy and scanning electrochemical microscopy
Authors:Glidle Andrew  Yasukawa Tomoyuki  Hadyoon Charlotte S  Anicet Nathalie  Matsue Tomokazu  Nomura Masayuki  Cooper Jon M
Affiliation:Bioelectronics Research Group, Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
Abstract:We describe a method, based on X-ray photoelectron spectroscopy (XPS) measurements, to assess the extent of protein adsorption or binding on a variety of different muTAS and biosensor interfaces. Underpinning this method is the labeling of protein molecules with either iodine- or bromine-containing motifs by using protocols previously developed for radiotracer studies. Using this method, we have examined the adsorption and binding properties of a variety of modified electrodeposited polymer interfaces as well as other materials used in muTAS device fabrication. Using polymer interfaces modified with poly(propylene glycol) (PPG) chains, our results indicate that a chain of at least approximately 30 monomer units is required to inhibit nonspecific adsorption from concentrated protein solutions. The XPS methodology was also used to probe specific binding of avidins and enzyme conjugates thereof to biotinylated and mixed biotin/PPG-modified polymer interfaces. In one example, using competitive binding, it was established that the mode of binding of a peroxidase-streptavidin conjugate to a biotinylated modified polymer interface was primarily via the streptavidin moiety (as opposed to nonspecific binding via the enzyme conjugate). XPS evaluation of nonspecific and specific peroxidase-streptavidin immobilization on various functionalized polymers has guided the design and fabrication of functionalized interdigitated electrodes in a biosensing muTAS device. Subsequent characterization of this device using scanning electrochemical microscopy (SECM) corroborated the adsorption and binding previously inferred from XPS measurements on macroscale electrodes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号