首页 | 本学科首页   官方微博 | 高级检索  
     

电子鼻检测黄山毛峰茶贮藏时间方法研究
引用本文:薛大为,杨春兰,孔慧芳,鲍俊宏. 电子鼻检测黄山毛峰茶贮藏时间方法研究[J]. 现代食品科技, 2016, 32(11): 328-333
作者姓名:薛大为  杨春兰  孔慧芳  鲍俊宏
作者单位:(1.蚌埠学院电子与电气工程系,安徽蚌埠 233030),(1.蚌埠学院电子与电气工程系,安徽蚌埠 233030),(2.合肥工业大学电气与自动化工程学院,安徽合肥 230009),(1.蚌埠学院电子与电气工程系,安徽蚌埠 233030)
基金项目:安徽省高等学校省级自然科学研究项目(KJ2013Z195);安徽省高等学校优秀青年人才基金项目(2012SQRL218);国家级大学生创新创业训练计划项目(201511305023)
摘    要:利用电子鼻对6个不同贮藏时间下5个等级黄山毛峰茶进行检测。首先获取反映茶叶香气的原始特征向量,再通过主成分分析法(PCA)提取出前5个主成分作为主特征向量,然后以主特征向量作为BP神经网络(BPNN)的输入,建立黄山毛峰茶贮藏时间预测模型(称为PCA-BPNN)。通过对75个测试样本(每等级15个)实验测试表明:PCA-BPNN对于贮藏0 d的茶叶,最大预测误差为7 d,5个(6.67%)样本预测误差超过10 d;对于贮藏60 d的茶叶,最大预测误差为10 d,4个(5.33%)样本预测误差超过10 d;对于贮藏120 d的茶叶,最大预测误差为16 d,7个(9.33%)样本预测误差超过10 d;对于贮藏180 d的茶叶,最大预测误差为19 d,8个(10.67%)样本预测误差超过10 d;对于贮藏240 d的茶叶,最大预测误差为21 d,8个(10.67%)样本预测误差超过10 d;对于贮藏300 d的茶叶,最大预测误差为14 d,6个(8.00%)样本预测误差超过10 d。验证了PCA-BPNN预测模型用于检测黄山毛峰茶贮藏时间的可行性,同时与以原始特征变量作为输入的BPNN预测模型相比,性能更好。

关 键 词:黄山毛峰茶;电子鼻;PCA;BPNN;预测模型
收稿时间:2015-12-12

An Electronic Nose-based Method for Determination of the Storage Time of Huangshan Maofeng Tea
XUE Da-wei,YANG Chun-lan,KONG Hui-fang and BAO Jun-hong. An Electronic Nose-based Method for Determination of the Storage Time of Huangshan Maofeng Tea[J]. Modern Food Science & Technology, 2016, 32(11): 328-333
Authors:XUE Da-wei  YANG Chun-lan  KONG Hui-fang  BAO Jun-hong
Affiliation:(1.Department of Electronic and Electrical Engineering, Bengbu University, Bengbu 233030, China),(1.Department of Electronic and Electrical Engineering, Bengbu University, Bengbu 233030, China),(2.School of Electrical and Automation Engineering, Hefei University of Technology, Hefei 230009, China) and (1.Department of Electronic and Electrical Engineering, Bengbu University, Bengbu 233030, China)
Abstract:Five grades of Huangshan Maofeng tea samples with six different storage times were analyzed by using an electronic nose. First, the original feature vectors representing the tea odor were acquired, and the first five principal components were extracted as the principal feature vectors. The principal feature vectors were used as the input of back propagation neural network (BPNN) to establish the prediction model for the storage time of Huangshan Maofeng tea (called PCA-BPNN). The test was carried out on 75 tea samples (15 samples of every grade). The results showed that for the tea at zero day of storage, the maximum prediction error was seven days and the prediction error of five samples exceeded ten days (6.67%). For the tea of 60 d of storage, the maximum prediction error was ten days, and the prediction error of four samples exceeded ten days (5.33%). For the tea of 120 d of storage, the maximum prediction error was 16 d and the prediction error of seven samples exceeded ten days (9.33%). For the tea of 180 d of storage, the maximum prediction error was 19 d and the prediction error of eight samples exceeded ten days (10.67%). For the tea of 240 d of storage, the maximum prediction error was 21 d and the prediction error of eight samples exceeded ten days (10.67%). For the tea of 300 d of storage, the maximum prediction error was 14 d and the prediction error of six samples exceeded ten days (8.00%). The feasibility of PCA-BPNN prediction model to determine the storage time of Huangshan Maofeng tea was verified. Moreover, the performance of PCA-BPNN prediction model was better than that of BPNN prediction model using the original feature vectors as the input.
Keywords:Huangshan Maofeng tea   electronic nose   principal component analysis   back propagation neural network   prediction model
本文献已被 CNKI 等数据库收录!
点击此处可从《现代食品科技》浏览原始摘要信息
点击此处可从《现代食品科技》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号