首页 | 本学科首页   官方微博 | 高级检索  
     


Optimizing the binary discriminant function in change detection applications
Authors:Jungho Im  John R Jensen
Affiliation:a Department of Environmental Resources and Forest Engineering, State University of New York, College of Environmental Science and Forestry, United States
b Department of Geography, University of South Carolina, United States
Abstract:Binary discriminant functions are often used to identify changed area through time in remote sensing change detection studies. Traditionally, a single change-enhanced image has been used to optimize the binary discriminant function with a few (e.g., 5-10) discrete thresholds using a trial-and-error method. Im et al. Im, J., Rhee, J., Jensen, J. R., & Hodgson, M. E. (2007). An automated binary change detection model using a calibration approach. Remote Sensing of Environment, 106, 89-105] developed an automated calibration model for optimizing the binary discriminant function by autonomously testing thousands of thresholds. However, the automated model may be time-consuming especially when multiple change-enhanced images are used as inputs together since the model is based on an exhaustive search technique. This paper describes the development of a computationally efficient search technique for identifying optimum threshold(s) in a remote sensing spectral search space. The new algorithm is based on “systematic searching.” Two additional heuristic optimization algorithms (i.e., hill climbing, simulated annealing) were examined for comparison. A case study using QuickBird and IKONOS satellite imagery was performed to evaluate the effectiveness of the proposed algorithm. The proposed systematic search technique reduced the processing time required to identify the optimum binary discriminate function without decreasing accuracy. The other two optimizing search algorithms also reduced the processing time but failed to detect a global maxima for some spectral features.
Keywords:Systematic search technique  Change detection  Optimization  Binary discriminant function  Hill climbing  Simulated annealing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号