首页 | 本学科首页   官方微博 | 高级检索  
     

基于多尺度分析与神经网络的需水量预测
引用本文:畅建霞,于兴杰,黄强,刘招. 基于多尺度分析与神经网络的需水量预测[J]. 计算机工程与应用, 2008, 44(17): 219-221. DOI: 10.3778/j.issn.1002-8331.2008.17.065
作者姓名:畅建霞  于兴杰  黄强  刘招
作者单位:西安理工大学 水电学院,西安 710048
摘    要:采用小波多尺度分解的方法,将需水量时间序列分解为多个较平稳的细节子序列和一个趋势序列,再利用BP神经网络对分解后的各序列进行预测,把预测后的序列聚合重构,得到预测结果。以新疆石河子地区的需水量为例对该方法作了验证。表明多尺度分析与神经网络耦合预测,比单一BP神经网络预测精度更高,可满足实际需要。

关 键 词:多尺度分解  BP神经网络  小波分析  需水量预测
收稿时间:2007-10-24
修稿时间:2008-1-11 

Water demand forecasting based on multi-scales analysis and neural network
CHANG Jian-xia,YU Xing-jie,HUANG Qiang,LIU Zhao. Water demand forecasting based on multi-scales analysis and neural network[J]. Computer Engineering and Applications, 2008, 44(17): 219-221. DOI: 10.3778/j.issn.1002-8331.2008.17.065
Authors:CHANG Jian-xia  YU Xing-jie  HUANG Qiang  LIU Zhao
Affiliation:College of Hydroelectric Power,Xi’an University of Technology,Xi’an 710048,China
Abstract:The time series of water demand can be decomposed into several stationary detailed time series and a tendency time series according to the algorithm of this multi-scales in this paper.Decomposed time series are forecasted with BP neural network to obtain the prediction series.Then the forecasting results are reconstructed by wavelet theory.So,the forecasting result is gained.An example of water demand of Shihezi in Xinjiang Province is used to testify the feasibility of the new method.The results show that the method of coupling multi-scale decomposition and BP neural network has advantages over the traditional BP neural network in predicted qualification-rate,and has feasibility in forecasting of time series.
Keywords:multi-scale decomposition  BP Neural Network  wavelet analysis  water demand forecasting
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号