首页 | 本学科首页   官方微博 | 高级检索  
     


Redesign of the substrate specificity of human cathepsin D: the dominant role of position 287 in the S2 subsite
Authors:Scarborough  Paula E; Dunn  Ben M
Affiliation:Department of Biochemistry and Molecular Biology, University of Florida Gainesville, FL 32610–0245, USA
Abstract:Interest in the active site specificity of human cathepsin Dstems from the search for specific therapeutic agents againstmany of the sequentially and structurally homologous membersofthe aspartic proteinase family. The work presented here examinedone amino acid in the cathepsin D sequence, located in the S2subsite, which contributes substantially to the specificityof enzyme-Ugand interactions at the enzyme active site. Previousstudies reported on the specificity of binding and catalysisby native and recombinant human cathepsin D explored throughkinetic studies using a systematic series of synthetic substrates.Utilizing a rulebased molecular model of human cathepsin D,Met287 was suggested as a candidate for mutagenesis to furtherexplore selectivity within the S2 subsite of the cathepsin Dactive site. Met287 mutant derivatives of human cathepsin Dwere designed, expressed and characterized in kineticstudies.Native cathepsin D accommodates large hydrophobic residues inthe P2 position of a substrate; positively charged residuesin P2 are not favorable for catalysis.It was demonstrated thataltering Met287 of human cathepsin D to more polar amino acidsproduced active mutant enzymes with significantly altered substratespecificity.
Keywords:active site/  aspartic proteinase/  cathepsin D/  mutagenesis/  substrate specificity
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号