首页 | 本学科首页   官方微博 | 高级检索  
     

求解job shop调度问题的量子粒子群优化算法*
引用本文:石锦风,冯斌,孙俊. 求解job shop调度问题的量子粒子群优化算法*[J]. 计算机应用研究, 2008, 25(3): 684-686
作者姓名:石锦风  冯斌  孙俊
作者单位:(江南大学 信息工程学院, 江苏 无锡 214122)
基金项目:国家自然科学基金资助项目(60474030)
摘    要:针对粒子群优化算法搜索空间有限、容易出现早熟现象的缺陷,提出将量子粒子群优化算法用于求解作业车间调度问题。求解时,将每个调度按照一定的规则编码为一个矩阵,并以此矩阵作为算法中的粒子;然后根据调度目标确定目标函数,并按照量子粒子群优化算法的进化规则在调度空间内搜索最优解。仿真实例结果证明,该算法具有良好的全局收敛性能和快捷的收敛速度,调度效果优于遗传算法和粒子群优化算法。

关 键 词:粒子群优化算法;量子粒子群优化算法;作业车间调度
文章编号:1001-3695(2008)03-0684-03
修稿时间:2007-01-01

Quantum behaved particle swarm optimization forsolving job shop scheduling problem
SHI Jin feng,FENG Bin,SUN Jun. Quantum behaved particle swarm optimization forsolving job shop scheduling problem[J]. Application Research of Computers, 2008, 25(3): 684-686
Authors:SHI Jin feng  FENG Bin  SUN Jun
Affiliation:(School of Information Technology, Southern Yangtze University, Wuxi Jiangsu 214122, China)
Abstract:Dealing with such disadvantages of PSO algorithm as finite sampling space, being easy to run into prematurity,QPSO algorithm was proposed to be applied to solve job shop scheduling problem (JSSP). During the scheduling process, obeying to some particular regulations, every scheduling was encoded into a matrix, and this matrix was regarded as a particle in QPSO algorithm; the objective function was determined based on the objective of scheduling. According to evolution formulae of QPSO algorithm, the scheduling space was searched for the global optimization. The simulation results show that this algorithm has better global convergence ability and more rapid convergence, and it is superior to genetic algorithm (GA) and PSO algorithm.
Keywords:
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号