首页 | 本学科首页   官方微博 | 高级检索  
     

L360钢在H2S/CO2环境中腐蚀的预测
引用本文:赵景茂,魏辉荣,张娇娇,熊金平,唐聿明,左禹. L360钢在H2S/CO2环境中腐蚀的预测[J]. 腐蚀科学与防护技术, 2012, 0(2): 163-166
作者姓名:赵景茂  魏辉荣  张娇娇  熊金平  唐聿明  左禹
作者单位:北京化工大学材料科学与工程学院
摘    要:运用BP人工神经网络技术建立了预测L360钢在H2S/CO2环境中腐蚀的模型,神经网络拓扑结构为5-4-1,网络模型训练成功以后,应用它预测L360钢在H2S/CO2中的腐蚀速度.结果表明,人工神经网络模型预测的结果与实验数据相当符合,误差在14%以内.由此可见,BP神经网络模型可以作为预测H2S/CO2环境致集输管线腐蚀速率的工具.

关 键 词:L360钢  H2S/CO2腐蚀  BP人工神经网络  腐蚀速率

Prediction of Corrosion Rate of L360 Steel in H2S/CO2 Environment
ZHAO Jing-mao,WEI Hui-rong,ZHANG Jiao-jiao,XIONG Jin-ping,TANG Yu-ming,ZUO Yu. Prediction of Corrosion Rate of L360 Steel in H2S/CO2 Environment[J]. Corrosion Science and Protection Technology, 2012, 0(2): 163-166
Authors:ZHAO Jing-mao  WEI Hui-rong  ZHANG Jiao-jiao  XIONG Jin-ping  TANG Yu-ming  ZUO Yu
Affiliation:College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029
Abstract:An BP(back-propagation) aritifical neueal network(ANN) model for the predicting of the corrosion rate of L360 steel in H2S/CO2 environment was established,neural network architecture is 5-4-1.After the successive training,the model could be applied to predict the corrosion rate of L360 steel in H2S/CO2 environment.The forecast results from the network model are in good agreement with the experimental data,the comparative error is less than 14%.Application of BP aritifical neural network to predict the corrosion rate of gathering and transport pipeline in H2S/CO2 environment is feasible.
Keywords:L360 steel  H2S/CO2 corrosion  BP artifical neural network  corrosion rate
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号