首页 | 本学科首页   官方微博 | 高级检索  
     


Fatigue lifetime of repaired high heat flux components for ITER divertor
Authors:M. Richou  M. Missirlian  B. Riccardi  P. Gavila  C. Desgranges  N. Vignal  V. Cantone  S. Constans
Affiliation:1. CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France;2. Fusion For Energy, 08019 Barcelona, Spain;3. AREVA NP PTCMI-F, Centre Technique, Fusion, 71200, Le Creusot, France
Abstract:Thermal fatigue behaviour of repaired monoblocks was assessed from High Heat Flux (HHF) tests up to 20 MW m?2 on 11 components. Among these components, 8 monoblocks were repaired (2 CFC and 6 tungsten). These components were manufactured by two EU industries: ANSALDO Ricerche and PLANSEE. Non destructive examination was performed on SATIR thermography test bed before and after HHF tests. SATIR results show that repaired monoblocks have a good thermal exhaust capability before HHF tests. For all monoblocks, no degradation of thermal properties was noticed during cycles at 10 MW m?2. After hundreds of cycles at 20 MW m?2, two W repaired monoblock melted. Post-HHF SATIR examination revealed a degradation of thermal properties which is systematic for W melted monoblocks and non-systematic for W repaired ones. For CFC repaired monoblocks, no damage was observed up to 20 MW m?2. For the first ITER divertor set, specifications for the pre-qualification are that CFC (Resp. W) components have to sustain in steady state 1000 cycles at 10 MW m?2 (Resp. 3 MW m?2) followed by 1000 cycles at 20 MW m?2 (Resp. 5 MW m?2). For the first ITER divertor set, the repair process is validated for CFC and W monoblocks.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号