首页 | 本学科首页   官方微博 | 高级检索  
     


Development of SAW based gyroscope with high shock and thermal stability
Authors:Haekwan Oh  Wen Wang  Sangsik Yang  Keekeun Lee
Affiliation:1. Department of Electronics Eng., Ajou University, Yountong-gu, Wonchun-Dong, Suwon 442-749, South Korea;2. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100080, China
Abstract:A novel surface acoustic wave (SAW)-based gyroscope with an 80 MHz central frequency was developed on a 128° YX LiNbO3 piezoelectric substrate. The developed sensor was composed of a SAW resonator, metallic dots, and two SAW delay lines. A SAW resonator was employed to generate a stable standing wave with a large amplitude, metallic dots were used to induce a Coriolis force and to form a secondary SAW, and two delay lines were formed to extract the Coriolis effect by comparing the resonance frequencies between these two delay lines. Coupling of modes (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. According to the simulation results, the device was fabricated and then measured on a rate table. When the device was subjected to an angular rotation, resonant frequency differences between the two oscillators were observed because of the secondary wave, generated by the Coriolis force, perturbed the propagation of the SAW in the sense element. Depending on the angular velocity, the difference of the resonance frequency was linearly modulated. The obtained sensitivity was approximately 172 Hz deg?1 s?1 at an angular rate range of 0–500 deg/s. Device performances depending on different mass weights and temperatures were also characterized. Good thermal and shock stabilities were observed during the evaluation process.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号