首页 | 本学科首页   官方微博 | 高级检索  
     


Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres
Authors:Yaowei Yu  Henrik Saxén
Affiliation:Thermal and Flow Engineering Laboratory, Department of Chemical Engineering, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo, Finland
Abstract:The velocity distribution and flow pattern of particles in hoppers during discharging process are of great significance when granular materials are handled in the industry, e.g., in the charging of the ironmaking blast furnace. This paper studies the flow of mono-sized glass particles and the effect of the coefficient of static friction of particle-wall on flow pattern and velocity distribution in a 3D conical hopper using the discrete element method (DEM). The validity of the calculated results was confirmed by comparing them with experimental results reported in the literature. The results show that DEM can be used to predict the behavior of the particles during hopper discharging. Particles were found to have the same velocity in almost the whole area of the hopper except in the conical orifice zone and the movement was controlled by the angular velocity during the discharging process. The flow pattern changes from mass flow to funnel flow and the wall shear layer becomes larger and wider with the increase of coefficient of static friction of particle-wall. The effect of coefficient of static friction of particle-wall on velocity distribution at wall area is obvious.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号