Abstract: | AbstractAs a solid state joining technique, friction stir welding (FSW) can produce high strength, low distortion joints efficiently. Compared to fusion welding, residual stresses in FSW joints are expected to be low due to a relatively low heat input. However, apart from the heat input, the force from the tool also plays an important role in the development of welding stresses. In the present paper, a semicoupled thermomechanical finite element model containing both thermal load and mechanical load was established to simulate the development of welding stresses during FSW process; an autoadapting heat source model was employed in the thermal analysis; the fixture was also included in the mechanical analysis model. The simulation results showed that due to the effect of the tool force, the longitudinal residual tensile stresses became smaller and were asymmetrically distributed at different sides of the weld centre; the peak of the tensile residual stresses at the retreating side was lower than that at the advancing side. Calculated and experimental results were compared. |