首页 | 本学科首页   官方微博 | 高级检索  
     


Artificial neural networks and acoustic emission applied to stability analysis in gas metal arc welding
Abstract:Abstract

The present paper describes the application of neural networks to obtain a model for estimating the stability of gas metal arc welding (GMAW) process. A neural network has been developed to obtain and model the relationships between the acoustic emission (AE) signal parameters and the stability of GMAW process. Statistical and temporal parameters of AE signals have been used as input of the neural networks; a multilayer feedforward neural network has been used, trained with back propagation method, and using Levenberg Marquardt's algorithm for different network architectures. Different welding conditions have been studied to analyse the incidence of the parameters of the process in acoustic signals. The AE signals have been processed by using the wavelet transform, and have been characterised statistically. Experimental results are provided to illustrate the proposed approach. Finally a statistical analysis for the validation of the experimental results obtained is presented. As a main result of the study, the effectiveness of the application of the artificial neural networks for modelling stability analysis in welding processes has been demonstrated. The regression analysis demonstrates the validity of neural networks to predict the stability of welding process using the statistical characterisation of the signal parameters of AE that have been calculated.
Keywords:ARTIFICIAL NEURAL NETWORKS  ARC STABILITY  ACOUSTIC EMISSION  GAS METAL ARC WELDING  SIGNAL PROCESSING
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号