首页 | 本学科首页   官方微博 | 高级检索  
     


Mathematical modelling of electroslag remelting P91 hollow ingots process with multi-electrodes
Abstract:Abstract

Electroslag remelting (ESR) hollow ingot process with T-shape current supplying mould is a new metallurgical technology. A mathematical model was developed to describe the interaction of multiple physical fields of this process for studying the process technology. Maxwell, Navier-Stokes and heat transfer equations have been adopted in the model to analyse the electromagnetic field, magnetic driven fluid flow, buoyancy driven flow and heat transfer using finite element software ANSYS. Moreover, the model has been verified through the metal pool depth measurements, which were obtained during remelting of 10 electrodes into Φ900/500 mm hollow ingots of P91 steel, with a slag composition of 50–60 wt-% CaF2, 10–20 wt-% CaO, 20–30 wt-% Al2O3, ≤8 wt-% SiO2. There was a good agreement between the calculated results and the measured results. The calculated results show that the distribution of current density, magnetic induction intensity, electromagnetic force, Joule heating, fluid flow and temperature are symmetric but not uniform due to the multi-electrode arrangement in two symmetric groups. Simulation of the ESR hollow ingot process will help to understand the new technology process and optimise operating parameters.
Keywords:Electroslag remelting  Hollow ingot  Multi-electrode  Numerical model  Internal mould
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号