Abstract: | AbstractThis study investigates the mechanical properties and microstructure of friction stir butt welded high strength/ductility multilayered steel consisting of 15 alternating layers of SUS 301 austenitic stainless steel (eight layers) and SUS 420J2 martensitic stainless steel (seven layers) with a total thickness of 1·2 mm. With optimised welding parameters, defect free welds with an ultimate tensile strength (UTS) of 1240 MPa and a fracture elongation of 13% were accomplished. This corresponds to a joint efficiency of 90%. In this case, fracture occurred in the heat affected zone as a result of a very pronounced hardness drop in the martensitic layers resulting from the formation of a large amount of grain boundary precipitates, which were formed at temperatures ~750°C slightly below Ac1. By applying post-weld heat treatment, the hardness drop in the martensitic layers was removed and the tensile properties were enhanced to UTS of 1310 MPa (95% joint efficiency) and a fracture elongation of 22%. |