Effect of additions of Ti,B and Ce on microstructural stability,creep strength and creep damage in austenitic stainless steel |
| |
Abstract: | AbstractOptical and transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis of bulk extracted precipitate residues were carried out on long term (more than 80 000 h) creep tested (at 1023 K) type 304 austenitic stainless steels with different levels of Ti content to assess the microstructural stability and creep strength. B and Ce were added to the steels to suppress the creep cavitation. Finer Ti(C,N) particles with higher density and narrower size distribution were observed in steels with a higher Ti content, resulting in an increase in the creep rupture strength. However, higher Ti content increased the intergranular precipitation of the σ phase on longer creep exposure, resulting in the increase in creep cavitation and in the decrease in creep rupture strength. The study indicated an optimum level of Ti and {C + (6/7)N} content with the Ti/{C + (6/7)N} ratio close to the stoichiometric value of the Ti(C,N) precipitate particles that should also be close to their solubility limit at the solution heat treatment temperature. |
| |
Keywords: | AUSTENITIC STAINLESS STEEL TI(C + 6/7) RATIO TI(C,N) PRECIPITATES STABILITY SIGMA PHASE FORMATION LONG TERM CREEP STRENGTH |
|
|