首页 | 本学科首页   官方微博 | 高级检索  
     


Adhesion and growth of electrically active cortical neurons on polyethylenimine patterns microprinted onto PEO-PPO-PEO triblockcopolymer-coated hydrophobic surfaces
Authors:Ruardij Teun G  van den Boogaart Marc A F  Rutten Wim L C
Affiliation:Fac. of Electr. Eng., Twente Univ., Enschede, Netherlands;
Abstract:This paper describes the adhesion and growth of dissociated cortical neurons on chemically patterned surfaces over a time period of 30 days. The presence of neurons was demonstrated by measurement of spontaneous bioelectrical activity on a micropatterned multielectrode array. Chemical patterns were prepared with a combination of neurophobic layers of polyethylenoxide-polypropylenoxide-polyethylenoxide (PEO-PPO-PEO) triblockcopolymers adsorbed onto hydrophobic surfaces and neurophilic microprinted tracks of polyethylenimine (PEI). Results showed that commercially available PEO-PPO-PEO triblockcopolymers F108 and F127 (Synperonics, ICI) significantly reduced the adhesion of neuronal tissue when adsorbed on hydrophobic Polyimide (PI) and Fluorocarbon (FC) surfaces over a time period of eight days. In general, both F108- and F127-coated PI displayed equal or better neurophobic background properties after 30 days. Viability of neuronal tissue after 30 days on PEI microprinted F108- and F127-coated PI was comparable with relatively high viability factors between 0.9 and 1 (scale from 0 to 1). Summarizing, the strategy to combine the neurophobic adsorbed triblock-copolymers F108 and F127 onto hydrophobic surfaces with neurophilic microprinted PEI resulted in relatively long-term neuronal pattern preservation with high numbers of viable neurons present after 30 days.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号