首页 | 本学科首页   官方微博 | 高级检索  
     

动态数据库中增量Top-k高效用模式挖掘算法
引用本文:吴倩,王林平,罗相洲,崔建群. 动态数据库中增量Top-k高效用模式挖掘算法[J]. 计算机应用研究, 2017, 34(5)
作者姓名:吴倩  王林平  罗相洲  崔建群
作者单位:华中师范大学,华中师范大学,华中师范大学,华中师范大学
基金项目:国家自然科学基金资助项目
摘    要:高效用模式的挖掘需要设定一个合适的阈值,而阈值设定对用户来说并非易事,阈值过小导致产生大量低效用模式,阈值过大可能导致无高效用模式生成。因而Top-k高效用模式挖掘方法被提出,k指效用值前k大的模式。并且大量的高效用挖掘研究仅针对静态数据库,但在实际应用中常常会遇到新事务的加入的情况。针对以上问题,提出了增量的Top-k高效用挖掘算法TOPK-HUP-INS。算法通过四个有效的策略,在增量数据的情况下,有效地挖掘用户所需数量的高效用模式。通过在不同数据集上的对比实验表明TOPK-HUP-INS算法在时空性能上表现优异。

关 键 词:增量挖掘;效用挖掘;Top-k模式挖掘;动态数据库
收稿时间:2016-03-25
修稿时间:2017-03-04

An incremental Top-k high utility pattern mining algorithm in dynamic database
Wu Qian,Wang Linping,Luo Xiangzhou and Cui Jianqun. An incremental Top-k high utility pattern mining algorithm in dynamic database[J]. Application Research of Computers, 2017, 34(5)
Authors:Wu Qian  Wang Linping  Luo Xiangzhou  Cui Jianqun
Affiliation:Central China Normal University,Central China Normal University,Central China Normal University,Central China Normal University
Abstract:Setting an appropriate threshold is essential to high utility pattern mining, however it is a difficult task for users. If the threshold is too low, a large number of low utility patterns are generated; if the threshold is too high, no high utility patterns may be generated. According, Top-k high utility pattern mining is proposed, in which k is the number of highest utility patterns. Most studies on high utility mining are only designed for static database, yet in real-world applications some new transactions inserted in original database. To address the above issues, an incremental Top-k high utility pattern mining algorithm is proposed, named TOPK-HUP-INS. The algorithm adopts four effective strategies to mine the high utility patterns that the number is user-specified in the case of incremental data. Comparing the experimental results on different datasets show that TOPK-HUP-INS performs well in terms of time and space.
Keywords:incremental mining   utility mining   Top-k pattern mining   dynamic database
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号