首页 | 本学科首页   官方微博 | 高级检索  
     


Fast and stable cloth simulation based on multi-resolution shape matching
Authors:Jan Bender  Daniel Weber  Raphael Diziol
Affiliation:1. Graduate School CE, TU Darmstadt, Germany;2. Fraunhofer IGD, Darmstadt, Germany;3. Karlsruhe Institute of Technology, Germany
Abstract:We present an efficient and unconditionally stable method which allows the deformation of very complex stiff cloth models in real-time. This method is based on a shape matching approach which uses edges and triangles as 1D and 2D regions to simulate stretching and shearing resistance. Previous shape matching approaches require large overlapping regions to simulate stiff materials. This unfortunately also affects the bending behavior of the model. Instead of using large regions, we introduce a novel multi-resolution shape matching approach to increase only the stretching and shearing stiffness. Shape matching is performed for each level of the multi-resolution model and the results are propagated from one level to the next one. To preserve the fine wrinkles of the cloth on coarse levels of the hierarchy we present a modified version of the original shape matching method. The introduced method for cloth simulation can perform simulations in linear time and has no numerical damping. Furthermore, we show that multi-resolution shape matching can be performed efficiently on the GPU.
Keywords:Cloth simulation  Shape matching  Multi-resolution model  GPU-based simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号