Efficient single layer RGB phosphorescent organic light-emitting diodes |
| |
Authors: | Zhiwei Liu Michael G. Helander Zhibin Wang Zhenghong Lu |
| |
Affiliation: | aDepartment of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario, Canada M5S 3E4 |
| |
Abstract: | We report efficient single layer red, green, and blue (RGB) phosphorescent organic light-emitting diodes (OLEDs) using a “direct hole injection into and transport on triplet dopant” strategy. In particular, red dopant tris(1-phenylisoquinoline)iridium [Ir(piq)3], green dopant tris(2-phenylpyridine)iridium [Ir(ppy)3], and blue dopant bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium [FIrpic] were doped into an electron transporting 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) host, respectively, to fabricate RGB single layer devices with indium tin oxide (ITO) anode and LiF/Al cathode. It is found that the maximum current efficiencies of the devices are 3.7, 34.5, and 6.8 cd/A, respectively. Moreover, by inserting a pure dopant buffer layer between the ITO anode and the emission layer, the efficiencies are improved to 4.9, 43.3, and 9.8 cd/A, respectively. It is worth noting that the current efficiency of the green simplified device was as high as 34.6 cd/A, even when the luminance was increased to 1000 cd/m2 at an extremely low applied voltage of only 4.3 V. A simple accelerated aging test on the green device also shows the lifetime decay of the simplified device is better than that of a traditional multilayered one. |
| |
Keywords: | Single layer Organic light-emitting diodes Phosphorescent Iridium complex |
本文献已被 ScienceDirect 等数据库收录! |
|