首页 | 本学科首页   官方微博 | 高级检索  
     


Switching kinetics of a Cu2S-based gap-type atomic switch
Authors:Nayak Alpana  Tsuruoka Tohru  Terabe Kazuya  Hasegawa Tsuyoshi  Aono Masakazu
Affiliation:WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, Japan. NAYAK.Alpana@nims.go.jp
Abstract:The switching time of a Cu(2)S-based gap-type atomic switch is investigated as a function of temperature, bias voltage, and initial off-resistance. The gap-type atomic switch is realized using a scanning tunneling microscope (STM), in which the formation and annihilation of a Cu-atom bridge in the vacuum gap between the Cu(2)S electrode and the Pt tip of the STM are controlled by a solid-electrochemical reaction. Increasing the temperature decreases the switching time exponentially with an activation energy of about 1.38 eV. Increasing the bias voltage also shortens the switching time exponentially, exhibiting a greater exponent for the lower bias than for the higher bias. Furthermore, faster switching has been achieved by decreasing the initial off-resistance between the Cu(2)S electrode and STM tip. On the basis of these results, we suggest that, in addition to the chemical reaction, the electric field in the vacuum gap plays a significant role in the operation of a gap-type atomic switch. This investigation advances our understanding of the operating mechanism of an atomic switch, which is a new concept for future electronic devices.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号